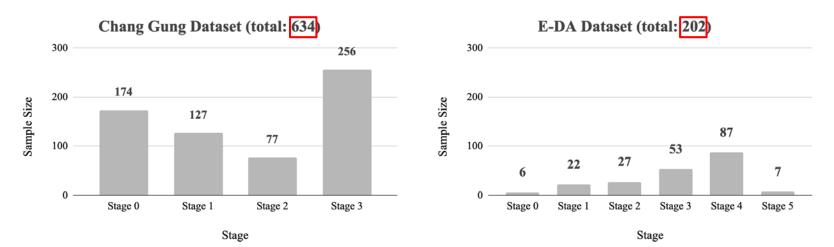
深度卷積神經網路 於三維腦部影像之多類別分類

Deep Convolutional Neural Networks for Multi-Class Classification of Three Dimensional Brain Images

賴婉禎、黃冠華

國立陽明交通大學 統計學研究所

Parkinson's Disease (PD)


- a degenerative neurological disorder related to striatal dopamine deficiency
- diagnosis:
 - clinical disabilities or symptoms
 - functional imaging
 - positron emission tomography (PET) 正子造影
 - single photon emission computed omography (SPECT) 單光子電腦斷層掃描
- related work:
 - binary classification for PD or not PD
 - models are on a basis of manually-selected slices


Objectives

- develop an appropriate model to deal with multi-class classification task in predicting stages of Parkinson's disease
- use the whole 3D information as model input
- take age and gender into consideration
 - the incidence and prevalence in males are higher than in females Wooten, G. F., et al. "Are men at greater risk for Parkinson's disease than women?." *Journal of Neurology, Neurosurgery & Psychiatry* 75.4 (2004): 637-639.
 - the incidence rates rise rapidly after the age of 60 Pringsheim, Tamara, et al. "The prevalence of Parkinson's disease: a systematic review and meta-analysis." *Movement disorders* 29.13 (2014): 1583-1590.
- combine two datasets provided by differnt hospitals in the training process

Datasets

- Type: 99mTc-TRODAT-1 SPECT imaging
- Format: DICOM (Digital Imaging and COmmunications in Medicine)
- Shape: (num slices * 128 pixel * 128 pixel)

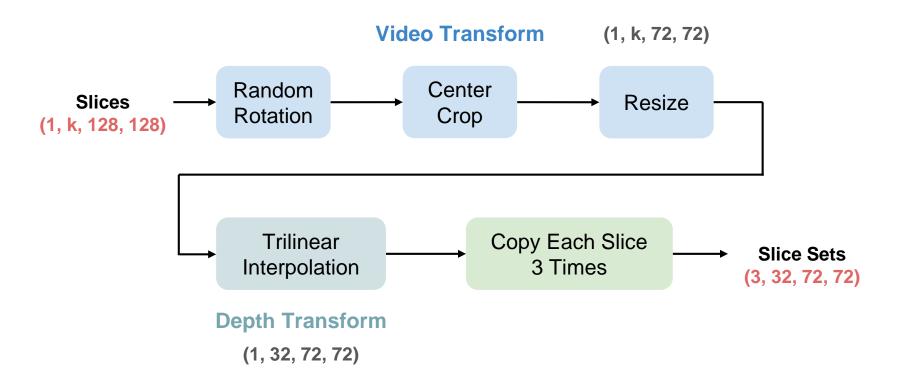
Methods

Preprocessing

• Min-Max Normalization: $\mathbf{X}_i(\text{norm}) = \frac{\mathbf{X}_i - \min(\mathbf{X}_i)}{\max(\mathbf{X}_i) - \min(\mathbf{X}_i)}$

Methods

- Other Information (Age & Gender):


Age:
$$y'_i = y_i/100, \quad y_i \in [0, 100]$$

 $\Box \quad \text{Gender:} \quad I = \begin{cases} 1 & \text{if gender is male} \\ 0 & \text{otherwise.} \end{cases}$

Results & Discussion

Conclusion

Augmentation

Methods

Results & Discussion

Imbalaced Data

• Class Weight: $w_k = \frac{N_k}{\sum_{i=1}^C N_i}$ where $N_k = \frac{n}{n_k}$

 $C\!\!:\! \text{number of classes}$

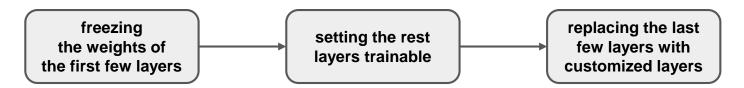
n: total number of samples

 n_k : number of samples in class k

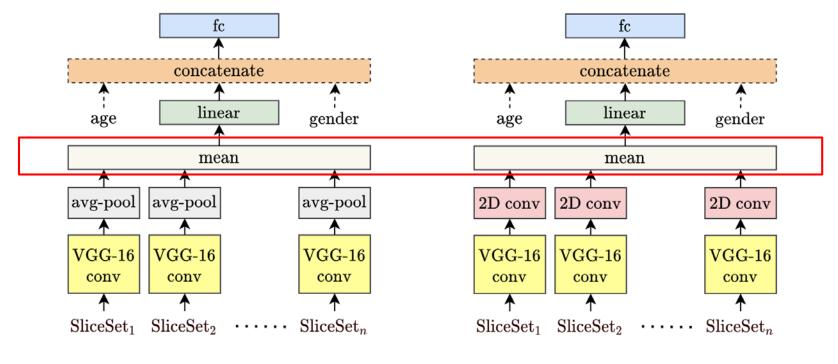
• Weighted Cross Entropy Loss:

$$CE_{\text{weighted}} = -\sum_{i=1}^{C} w_i t_i \log f(h)_i = -w_{\text{pos}} \log \frac{e^{h_{\text{pos}}}}{\sum_{j=1}^{C} e^{h_j}}$$

f: the softmax activation function


 $\mathbf{h} = (h_1, \dots, h_C)$: the output of our model

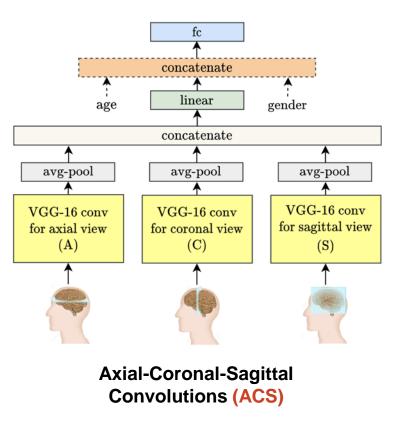
 $\mathbf{t} = (t_1, \dots, t_C)$: the label vector


Transfer Learning

- the process of creating new models by finetuning previously trained networks
- it can solve the difficulties of training a fullscale model from scratch with little data
- backbone:

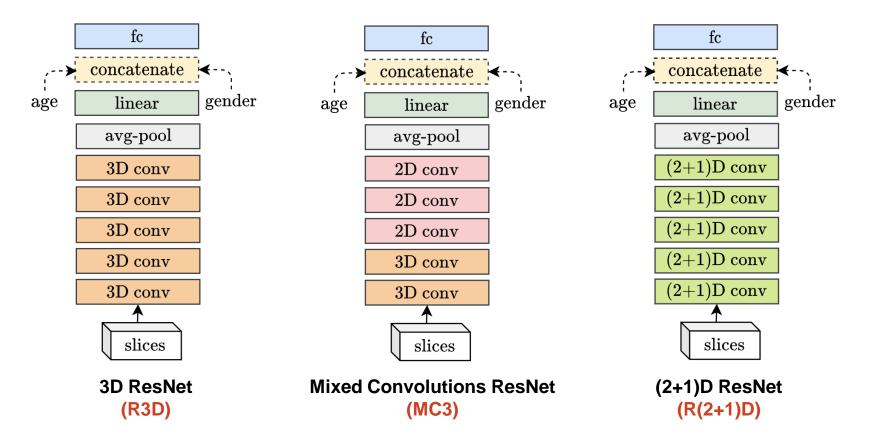
	backbone	dataset
2D	VGG-16	ImageNet
3D	models based on ResNet-18 architecture	Kinetics-400

2D Models


VGG plus Linear (Linear)

VGG plus Conv2D (Conv2D)

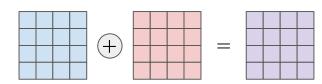
2D Models (cont.)

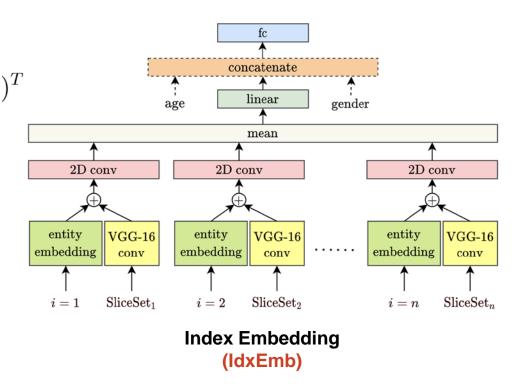

- 2D kernels are split by channel into three parts and convoluted separately
- "unsqueeze" the 2D kernels into pseudo 3D kernels on an axis: $W_a \in \mathbb{R}^{C_o^{(a)} imes C_i imes K imes K imes 1}$
- the output feature of each view:

$$\boldsymbol{X_o^{(v)}} = ext{Conv3D}(\boldsymbol{X_i}, \boldsymbol{W_v}) \in \mathbb{R}^{C_o^{(v)} \times T_o \times H_o \times W_o}$$

13

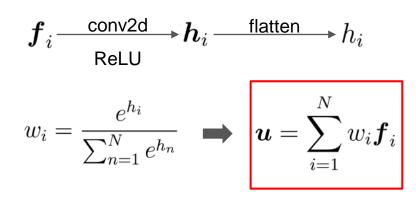
3D Models

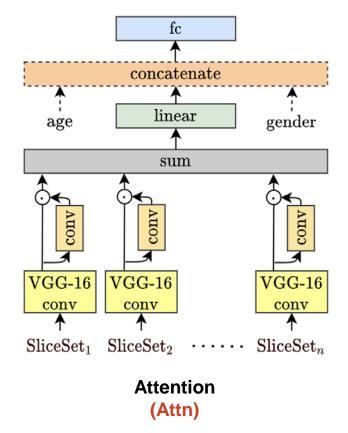



Slice-Relation-Based Models

• entity embedding:

$$\mathbf{x} \equiv \mathbf{W} \boldsymbol{\delta}_x = (w_{1x}, w_{2x}, \cdots, w_{kx})$$
 $\mathbf{W} = \{w_{ij}\} \in \mathbb{R}^{k \times m}$
trainable

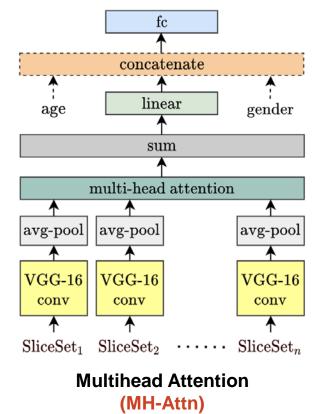

• reshape and add:



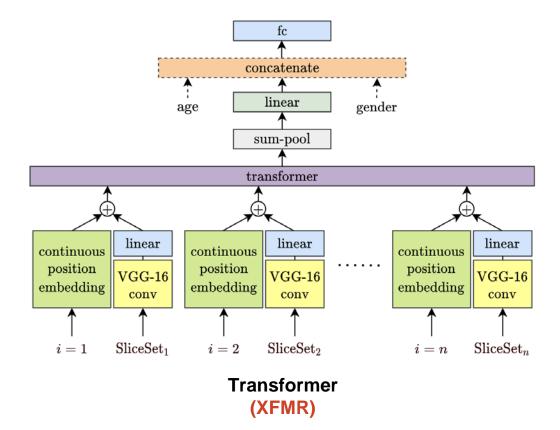
Slice-Relation-Based Models (cont.)

- only consider the relative importance of all slices in one subject
- average \rightarrow weighted sum

Slice-Relation-Based Models (cont.)


- consider the association between one slice and other slices of one subject
- self-attention:

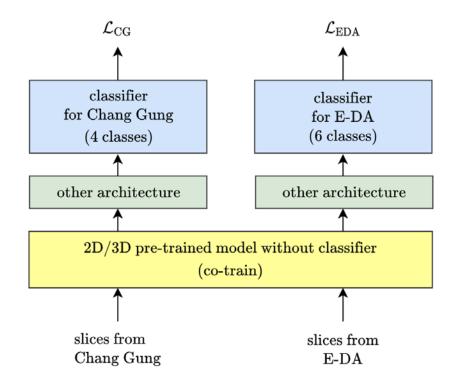
$$\boldsymbol{Q} = \boldsymbol{F} \boldsymbol{W}^Q, \boldsymbol{K} = \boldsymbol{F} \boldsymbol{W}^K, \boldsymbol{V} = \boldsymbol{F} \boldsymbol{W}^V$$


 $\text{Attention}(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = \text{softmax}(\boldsymbol{Q}\boldsymbol{K}^T)\boldsymbol{V} = \boldsymbol{Z}$

head

• multihead attention: (num_heads = 4) MultiHead(Q, K, V) = concat(head₁, head₂, ..., head₄) W^O

Slice-Relation-Based Models (cont.)



Machine Learning Models

- the parts before fully-connected layers of models are used for feature extractions
- the fully-connected layers are replaced with SVM or Random Forest classifier
- first calculate extracted features via MLP's estimating results, and then treat these extracted features as fixed input in SVM's or RF's classification parameter estimation

Co-Train Technique

Results & Discussion

2D vs. 3D

- mostly, 2D models outperform 3D models.
- The possible reasons are related to the datasets used for pre-trained

model.

	ImageNet (2D)	Kinetics-400 (3D)
size	1m+ 🙂	306k
similarity	images 🕲	action

		Chang Gung		E-DA	
Model	l	Accuracy	F-score	Accuracy	F-score
Linear	-	0.6798 (±0.03)	0.5870 (±0.03)	0.5000 (±0.07)	0.2445 (±0.04)
	+	0.6940 (±0.03)	0.6107 (±0.03)	0.4751 (±0.09)	0.2974 (±0.11)
Conv2D	-	0.6956 (±0.02)	0.5567 (±0.06)	0.4700 (±0.04)	0.2363 (±0.04)
	+	0.6862 (±0.04)	0.5570 (±0.06)	0.4606 (±0.03)	0.1987 (±0.02)
ACS	-	0.6057 (±0.02)	0.4963 (±0.04)	0.5294 (±0.04)	0.3648 (±0.09)
	+	0.6198 (±0.02)	0.5105 (±0.04)	0.5699 (±0.06)	0.3396 (±0.07)

2D Models

3D Models

		Chang Gung		E-DA	
Model		Accuracy	F-score	Accuracy	F-score
R3D	- +	0.6293 (±0.03) 0.6388 (±0.02)	0.4626 (±0.03) 0.4757 (±0.04)	0.4904 (±0.07) 0.4656 (±0.06)	0.3057 (±0.07) 0.2600 (±0.09)
МС	- +	0.6372 (±0.02) 0.6372 (±0.03)	0.4664 (±0.05) 0.4914 (±0.03)	0.4851 (±0.04) 0.4409 (±0.03)	0.2453 (±0.04) 0.2526 (±0.04)
R(2+1)D	+	0.6467 (±0.04) 0.6498 (±0.01)	0.4703 (±0.05) 0.5039 (±0.03)	0.4800 (±0.04) 0.4610 (±0.06)	0.2849 (±0.06) 0.2471 (±0.08)

Slice Relation

- slice-relation-based models seem to be appropriate for both datasets
- the stability becomes lower due to the growth of model complexity
- the relations among slices are important and should be taken into consideration

Slice-Relation-Based Models

		Chang	Gung	E-DA	
Model		Accuracy	F-score	Accuracy	F-score
IdxEmb-1	- +	0.6529 (±0.03) 0.6671 (±0.03)	0.5017 (±0.08) 0.5605 (±0.05)	0.5098 (±0.06) 0.4760 (±0.11)	0.3074 (±0.10) 0.2792 (±0.08)
IdxEmb-4	- +	0.6703 (±0.04) 0.6750 (±0.03)	0.5800 (±0.06) 0.5467 (±0.08)	0.5745 (±0.06) 0.5300 (±0.04)	0.3022 (±0.03) 0.3486 (±0.04)
Attn-1	- +	0.6814 (±0.02) 0.7019 (±0.02)	0.5390 (±0.04) 0.5808 (±0.04)	0.5445 (±0.06) 0.5100 (±0.03)	0.2859 (±0.06) 0.3117 (±0.06)
Attn-4	- +	0.6781 (±0.04) 0.6703 (±0.01)	0.5458 (±0.07) 0.5674 (±0.01)	0.5395 (±0.07) 0.5448 (±0.06)	0.3006 (±0.08) 0.3137 (±0.09)
MH-Attn	+	0.6481 (±0.05) 0.6641 (±0.02)	0.5021 (±0.05) 0.5179 (±0.03)	0.5249 (±0.06) 0.5246 (±0.07)	0.3079 (±0.12) 0.3385 (±0.08)
XFMR-1		0.6451 (±0.02)	0.5116 (±0.03)	0.5543 (±0.06)	0.2967 (±0.08)
XFMR-4		0.6735 (±0.05)	0.5316 (±0.05)	0.4656 (±0.10)	0.2361 (±0.07)

Co-Training

- co-training technique dose not always help improve the performances:
 - the improvement of E-DA dataset is evident
 - its effect on Chang Gung dataset is ambiguous

Co-Train 2D Models

Co-Train 3D Models

		Chang	Gung	E-l	DA
Model		Accuracy	F-score	Accuracy	F-score
Linear	- +	0.6703 (±0.03) 0.6529 (±0.02)	$\begin{array}{c} 0.5535 (\pm 0.04) \\ 0.5032 (\pm 0.05) \end{array}$	*0.5299 (±0.03) *0.5599 (±0.05)	*0.2953 (±0.03) *0.3191 (±0.09)
Conv2D	+ +	0.6750 (±0.03) 0.6655 (±0.04)	0. 5430 (±0.06) 0.5385 (±0.08)	*0.5450 (±0.06) *0.5640 (±0.05)	*0.3306 (±0.08) *0.2910 (±0.05)
ACS	- +	*0.6403 (±0.03) *0.6244 (±0.06)	*0.5252 (±0.06) *0.5129 (±0.08)	* 0.5695 (±0.04) 0.5495 (±0.05)	0.3181 (±0.04) * 0.3688 (±0.05)

		Chang	Gung	E-]	DA
Mode	l	Accuracy	F-score	Accuracy	F-score
R3D	-	*0.6294 (±0.02)	*0.4712 (±0.04)	0.4704 (±0.04)	0.2743 (±0.07)
	+	*0.6498 (±0.02)	*0.5046 (±0.03)	*0.5149 (±0.05)	*0.3039 (±0.04)
МС	-	0.6214 (±0.03)	*0.4808 (±0.03)	*0.5146 (±0.04)	*0.2979 (±0.08)
	+	0.6340 (±0.04)	*0.4880 (±0.02)	*0.5100 (±0.03)	*0.3093 (±0.11)
R(2+1)D	_	0.6419 (±0.02)	*0.4777 (±0.04)	0.4507 (±0.05)	*0.2941 (±0.09)
	+	* 0.6499 (±0.03)	* 0.5129 (±0.05)	*0.5093 (±0.08)	* 0.3595 (±0.08)

Co-Training (cont.)

- [E-DA] the original sample size is just too small to support such a large model, so the Chang Gung dataset becomes an aid
- [Chang Gung] larger sample size in higher resolution and less stages to be classified, and thus the EDA dataset turns into interference and resistance

	Chang Gung		E-1	DA	
Model		Accuracy	F-score	Accuracy	F-score
IdxEmb-1	+ +	0.6103 (±0.03) 0.6466 (±0.04)	$\begin{array}{c} 0.4854 (\pm 0.03) \\ 0.5216 (\pm 0.05) \end{array}$	*0.5589 (±0.04) *0.5440 (±0.08)	*0.3583 (±0.10) *0.3351 (±0.13)
IdxEmb-4	- +	*0.6766 (±0.04) 0.6513 (±0.03)	0.5578 (±0.06) 0.5423 (±0.07)	0.5546 (±0.02) 0.5052 (±0.05)	*0.3109 (±0.08) 0.2905 (±0.04)
Attn-1	- +	0.6308 (±0.04) 0.6750 (±0.04)	$\begin{array}{c} 0.5086\ (\pm 0.06)\\ 0.5489\ (\pm 0.07)\end{array}$	*0.5595 (±0.03) *0.5394 (±0.05)	* 0.3600 (±0.10) 0.3026 (±0.02)
Attn-4	- +	0.6639 (±0.05) 0.6608 (±0.04)	* 0.5641 (±0.06) 0.5331 (±0.08)	*0.5449 (±0.05) 0.5101 (±0.09)	*0.3085 (±0.05) *0.3158 (±0.10)
MH-Attn	- +	0.6309 (±0.02) 0.6639 (±0.04)	0.4837 (±0.03) *0.5455 (±0.05)	* 0.5743 (±0.02) *0.5594 (±0.05)	*0.3505 (±0.05) *0.3471 (±0.11)

Co-Train Slice-Relation-Based Models

Effect/Contribution of Age and Gender

- though age and gender help improve the accuracy and F-score in some cases, we are still **not able to** conclude that these two information indeed aid the prediction
 Classifier
 - the SVM and RF classifier have better or equivalent performances in most cases due to the higher nonlinearity extent

	Chang Gung		E-I	DA
best score	Accuracy	F-score	Accuracy	F-score
	0.7271	0.6427	0.6039	0.3922
technique	Age & Gender	Age & Gender	Co-Train	Co-Train
	SVM	SVM	SVM	RF

Differences of Two Target Datasets

the Chang Gung dataset always has a better performance than the E-DA dataset in terms of accuracy and macro F-score

	Chang Gung Dataset	E-DA Dataset
Sample Size	634 🙂	202
Stages	4 🙂	6
Image Quality	0 20 40 60 80 100 120 0 20 40 60 80 100 120	0 20 40 60 50 - 100 - 120 - 20 40 60 80 100 120

28

Human-Machine Comparison - Attention

Chang Gung Dataset	E-DA Dataset
 model pays more attention to the first few slices 	 model pays more attention to the middle few slices more compatible with manual selection, but the differences are not obvious
Active of the state of the stat	Average Hention Valid 0.00 0

Human-Machine Comparison - Prediction

		Doctor A				Doctor B				Doctor C			
Doctors vs. Majority	Diagnosis	0	1	2	3	0	1	2	3	0	1	2	3
	Majority 0 3	159 4 0 0	15 107 5 0	0 16 66 8	0 0 6 248	140 31 5 0	31 85 21 6	3 10 47 19	0 1 4 231	165 30 2 0	8 82 12 2	1 12 49 11	0 3 14 243
	Predicted	0	1	2	3	_			A	Accuracy		F-score	
Ours vs. Majority	Majority 0 7 3	128 31 5 0	44 67 24 1	2 25 30 19			Doctor A Doctor B Doctor C Majority		B C	0.7618 0.6530 0.6782 0.7271		0.7022 0.5671 0.5718 0.6443	

Conclusion

Conclusion

- the 2D models pre-trained on ImageNet have better performances than the 3D models pretrained on Kinetics-400
- the relations among slices should be taken into consideration without increasing too many trainable weights
- co-training technique is useful to improve the model efficacy and robustness under some constraints about sample size and similarity
- age and gender may sometimes be an aid for the stage prediction of PD
- The combination of SVM/RF classifiers and co-training or age and gender can bring to a human-like performance

Thank You

Q & A